Aurora-A controls cancer cell radio- and chemoresistance via ATM/Chk2-mediated DNA repair networks.

نویسندگان

  • Huizhen Sun
  • Yan Wang
  • Ziliang Wang
  • Jiao Meng
  • Zihao Qi
  • Gong Yang
چکیده

High expression of Aurora kinase A (Aurora-A) has been found to confer cancer cell radio- and chemoresistance, however, the underlying mechanism is unclear. In this study, by using Aurora-A cDNA/shRNA or the specific inhibitor VX680, we show that Aurora-A upregulates cell proliferation, cell cycle progression, and anchorage-independent growth to enhance cell resistance to cisplatin and X-ray irradiation through dysregulation of DNA damage repair networks. Mechanistic studies showed that Aurora-A promoted the expression of ATM/Chk2, but suppressed the expression of BRCA1/2, ATR/Chk1, p53, pp53 (Ser15), H2AX, γH2AX (Ser319), and RAD51. Aurora-A inhibited the focus formation of γH2AX in response to ionizing irradiation. Treatment of cells overexpressing Aurora-A and ATM/Chk2 with the ATM specific inhibitor KU-55933 increased the cell sensitivity to cisplatin and irradiation through increasing the phosphorylation of p53 at Ser15 and inhibiting the expression of Chk2, γH2AX (Ser319), and RAD51. Further study revealed that BRCA1/2 counteracted the function of Aurora-A to suppress the expression of ATM/Chk2, but to activate the expression of ATR/Chk1, pp53, γH2AX, and RAD51, leading to the enhanced cell sensitivity to irradiation and cisplatin, which was also supported by the results from animal assays. Thus, our data provide strong evidences that Aurora-A and BRCA1/2 inversely control the sensitivity of cancer cells to radio- and chemotherapy through the ATM/Chk2-mediated DNA repair networks, indicating that the DNA repair molecules including ATM/Chk2 may be considered for the targeted therapy against cancers with overexpression of Aurora-A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

XRRA1 Targets ATM/CHK1/2-Mediated DNA Repair in Colorectal Cancer

X-ray radiation resistance associated 1 (XRRA1) has been found to regulate the response of human tumor and normal cells to X-radiation (XR). Although XRRA1 overexpression is known to be involved in cancer cell response to XR, there are no reports about whether the expression of XRRA1 in tumors can adjust radioresistance. It is widely known that cell cycle arrest could cause radioresistance. We ...

متن کامل

Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair.

The pathway determining malignant cellular transformation, which depends upon mutation of the BRCA1 tumor suppressor gene, is poorly defined. A growing body of evidence suggests that promotion of DNA double-strand break repair by homologous recombination (HR) may be the means by which BRCA1 maintains genomic stability, while a role of BRCA1 in error-prone nonhomologous recombination (NHR) proce...

متن کامل

Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner.

Chk2 is a serine/threonine kinase that signals to cell cycle arrest, DNA repair, and apoptotic pathways following DNA damage. It is activated by phosphorylation in response to ionizing radiation, UV light, stalled replication forks, and other types of DNA damage. Hypoxia is a common feature of solid tumors and has been shown to affect the regulation of many genes, including several DNA repair f...

متن کامل

The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer.

DNA damage is a key factor both in the evolution and treatment of cancer. Genomic instability is a common feature of cancer cells, fuelling accumulation of oncogenic mutations, while radiation and diverse genotoxic agents remain important, if imperfect, therapeutic modalities. Cellular responses to DNA damage are coordinated primarily by two distinct kinase signaling cascades, the ATM-Chk2 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1843 5  شماره 

صفحات  -

تاریخ انتشار 2014